Laser Bond Inspection (LBI)

A4A NDT Conference September 24, 2014

David Sokol David Lahrman

LSP Technologies, Inc. Dublin, OH

Presentation Outline

- Introduction to Laser Bond Inspection (LBI) for Adhesively Bonded Composite Materials
- Relative Bond Strength Measurements
- LSPT's Development LBI System

- Validation of Structural Integrity of Bonded Materials by LSPT's Development LBI System
- Summary

Introduction to Laser Bond Inspection

Reasons to Implement (LBI)

- LBI measures relative bond strength
- LBI detects weak bonds but is nondestructive to strong bonds
- LBI detects kissing bonds
- LBI detects variations in bond strength due to:
 - Surface preparation
 - Adhesive mixing, and
 - Contaminations

Tensile Stress Wave

Energy= 5-50 Joules Pulse Width=100-300 ns Beam Dia.=10mm Wavelength=1054nm

1. Laser produces pressure pulse in surface overlay structure

3. Stress wave folds back and propagates as tension wave from a free (back) surface

CTH Code Simulation

Hydrodynamic 2D Code Simulation by Boeing

Comparison of CTH Simulation with Experiment

Laser Beam Diameter = 19 mm

Aluminum Thickness = 19 mm

Hydrodynamic 2D Code Simulation by Boeing

- A forward traveling compressive stress wave produces a reflected tensile stress wave upon reflection at the back free surface
- The strength of the tensile stress wave can be selected by varying the energy and/or the pulse width of the laser to fail weak bonds, while strong bonds are unaffected

UT Post Examination After LBI

17.7

Bonded composite test sample

10.7

5.6

Black no LBI Failure 3.4 Indication (J/cm^2)

1"

 Clear failure indication (damage parameter = 1)

Very marginal indication in "A" scan (damage parameter = 0.5)

No failure (damage parameter = 0)

Relative Bond Strength Measurements by LBI

LBI of a Sample with Three Different Bond Strengths

Two-part epoxy adhesive on grit blasted composite surface

LBI of a Kissing Bond

Detection of kissing bond by VISAR (velocity interferometer system for any surface) at a fluence below the threshold for delamination of the adjacent bonded region.

Laser Bond Inspection Development System

LBI Development System Specifications

- Pulse Energy: 5-50 Joules
- Pulse Width: 100-300 ns
- Pulse Repetition rate: 1/8 Hz
- Wavelength: 1054 nm
- Dimensions: 5.3 x 6.5 x 13 ft (W X H X L)

LBI System Developed to Inspect a Wide Range of Bonded Structures

LBI Development System

Laser Bond Inspection Head

- Eye Safe
- LED indicators
- Overlay Water Removal System
- Modular Design
- Quick Disconnects
- EMAT Sensor

EMAT MAGNET

EMAT COIL

VACUUM HOLD DOWN

OVERLAY WATER EVACUATION

Electro Magnetic Acoustic Transducer (EMAT)

Non-conducting composites require a conductive path for EMAT to detect surface motion

-15

EMAT sensor detects surface motion by electromagnetic induction

igodol

Motion of composite surface through magnetic field induces an electrical current that is picked up by the EMAT coil

Low-High-Low LBI by EMAT

A sequence of three laser pulses is used for bond inspection

- Apply low energy laser pulse to surface of part not enough energy to damage the bond - record EMAT signal
- Apply high energy laser pulse to surface of part enough energy to fail a weak bond - record EMAT signal
- Apply low energy laser pulse to surface of part not enough energy to damage the bond - record EMAT signal
- Compare the two low EMAT signals, if identical then bond is strong, if different bond is weak

LBI by Front Surface EMAT

EMAT signature above bond failure threshold in BMS 8-297 Laminate

Laser Bond Inspection Video

- Laser Bond Inspection -Adhesive Bond Strength Testing

Laser Bond Inspection Conclusion

Summary of LBI

- LBI creates an internal tensile stress wave that tests the relative strength of an adhesive interface in a bonded structure
- LBI detects weak bonds but does no harm to a good bond
- The strength of the stress wave is selected by varying the energy and/or the pulse width of the laser
- LBI can inspect bonded structures that are up to 1 inch in thickness

LBI Status

- LBI is now being evaluated by major OEMs for large composite structures
- The Boeing Co. has purchased a LBI system for the inspection of bonded structures and has implemented robotic inspection of bonded samples
- LBI system can be configured for an OEM's specific inspection need
- LBI of composite structures is available at LSP Technologies

Contact Information David Sokol LSPT Technologies, Inc. dsokol@lspt.com 614-718-3000, ext. 414