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Introduction and Background 

Motivation 

Presentation Outline 

 
 

   
    

  
 

    
  
 

      
 

 

   
     

  
 

        
 

 

     
 

 
               

    
 

Ice Impact Damage on 
Laminate Plates 

Full-Scale Panel 
Impact Testing  
• Simulated Hail 
• Blunt 
• Hardened 

Side-by-Side 
Inspection Comparison 
of NDI Techniques 

Conclusions 
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Composite Structures on 
Boeing 787 Aircraft 

Carbon laminate 
Carbon sandwich 
Fiberglass 
Aluminum 
Aluminum/steel/titanium pylons 

A380 Pressure Bulkhead 

Composite Center Wing Box 

Program Motivation - Extensive/increasing use of composites on 
commercial aircraft and increasing use of NDI to inspect them 

Program Goals: Assess & Improve Flaw Detection 
Performance in Composite Aircraft Structure 
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Sources of Damage in Composite Structure 

Bird Strike 
Towing Damage 

Lightning 
Strike on 

Thrust 
Reverser 

Lightning 
Strike on 
Fuselage 

Ground Support 
Equipment Impact 
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Significant 
Internal Damage 

Source: Carlos Bloom (Lufthansa) & S. Waite (EASA) 

Inspection Challenge – Hidden Impact Damage 
Internal delamination from ice impact 

Extent of Visible 
Damage from Outside 

Damage from ground vehicle 

Extent of visible damage 44 in2 Delamination 
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AANC Composite Programs  

• Industry wide NDI Reference Standards 
• NDI Assessment: Honeycomb Structures 
• NDI Assessment: Solid Laminate Structures 
• Composite Heat, UV, and Fluid Ingress Damage 
• Composite Repairs and Porosity 
• Composite NDI Training and NDI Proficiency Specimens 
 

Composite Impact Study 
 

 
 
 

– Identify which impact scenarios are of major concern to aircraft 
maintenance 

– Identify key parameters governing impact damage formation 
– Relate damage threat & structural integrity to capabilities of NDI 

to detect hidden impact damage in laminates 
– Develop methodology for impact threat characterization 

Inspection 
Task Group 

Multiple impact parameters must be studied – hardness of impactor, 
low mass-high velocity impact, high mass-low velocity impact, angle of 
impact, surface demarcations & visual clues, panel stiffness 
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Still Images from 61 mm Ice Impact 
on 8 Ply Carbon Panel at 72 m/s 

 
 

   
    

  
 

    
  
 

      
 

 

   
     

  
 

        
 

 

     
 

 
               

    
 

Ice Impact Testing at UCSD 

UCSD High Velocity Gas Gun 

Joint Effort: UCSD (Prof. Hyonny Kim) 
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Impact-Induced Damage 
Morphology for 8 Ply Panel; 

42.7 mm Ice at 120.4 m/s (267 J)  

Selected panels were sectioned and observed by microscopy to map out the damage. The laminates 
develop the series of classic peanut shaped delaminations/fractures that stack together to give the 

overall appearance shown in the scans 

Failure Threshold (Energy) Velocity 

D = Impactor Dia. 
H = Panel Thickness 

Damage in Composite Laminates from Ice Impact 
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• 112 carbon composite panels were fabricated using BMS8-276N uniaxial 
material; consisted of 8, 16, and 24 ply configurations (12” x 12”) 

 

• All panels were impacted with ice balls of different diameters and 
velocities to simulate hail and create various levels of impact damage 

 

• The goal was to create damage associated with Failure Threshold ~ BVID 
range & complete NDI to evaluate the sensitivity of each method in 
detecting and sizing the damaged area (reliable, sensitive, gate 
deployment, cost effective) 

Composite Impact Study –  
Hail Impact Task Description 

• NDI methods used for this evaluation 
include: Through Transmission 
Ultrasonics (TTU), Phased Array UT, 
Pulse-Echo UT, Resonance, Flash 
Thermography, Damage Checker (PE-UT), 
Mechanical Impedance Analysis, Low 
Frequency Bond Test 

Joint Effort: UCSD (Prof. Hyonny Kim) 
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Composite Impact Damage – 
Inspection Methods Deployed 

TTU 
MAUS PE 

MAUS MIA 
MAUS  

Resonance 

Thermography 
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Composite Impact Damage – 
Inspection Methods Deployed 

MAUS LFBT 

Omniscan Phased Array UT 

V-95 
(Mechanical Impedance 

Analysis)  

Damage Check Device 
(Pulse-Echo UT) 
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TC-16-25 

Picture TTU MAUS PE Omni PE 

IR MAUS Resonance Omni PA 

    Y 

Impact Energy (J) - _____________ 525.1 

Impact Velocity (m/s) - _________ 

Projectile Size (mm) - _______ Flaw Size TTU UCSD  (mm²) - _______ 38.1 26439 
Flaw Size Omniscan PE (mm²) - ________ 28,380 
Flaw Size MAUS PE (mm²) - ________ 37,128 212.44 

Ramp Damage Checker  
(flaw indicated) 

Good area Imp. area 

Laser UT 

Example Result 
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TC-24-19 

Picture TTU MAUS PE Omni PE 

IR MAUS Resonance Omni PA 

    Y 

Impact Energy (J) - _____________ 1,268.1 

Impact Velocity (m/s) - _________ 

Projectile Size (mm) - _______ Flaw Size TTU UCSD  (mm²) - _______ 61 8,022 
Flaw Size Omniscan PE (mm²) - ________ 9,439 
Flaw Size MAUS PE (mm²) - ________ 9,413 153.46 

Ramp Damage Checker  
(flaw indicated) 

Imp. area Good area 

Example Result 
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TC-08-29 

Picture TTU MAUS PE Omni PE 

IR MAUS Resonance Omni PA 

A-scan Ref  

Impact Energy (J) - _____________ 306.7 

Impact Velocity (m/s) - _________ 
Projectile Size (mm) - _______ 50.8 

99 

0 
Flaw Size Omniscan PE (mm²) - ________ 554 
Flaw Size MAUS PE (mm²) - ________ 703 

Flaw Size TTU UCSD  (mm²) - _______ 

    N 

Ramp Damage Checker  
(flaw indicated) 

Imp. area Good area 

Example Result 
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Full-Scale Fuselage Test 
Panel Fabrication 

T800 unidirectional pre-preg tape with a 3900 series resin system (BMS8- 276) 

Tapered Region 
Hat Section 

Stringer  

Autoclave Cured (350° F at 90 psi) 
Skin - Curved Construction 

Quasi-Isotropic Lay Up [0,+45,90.-45]2(s) 

Not flat, simple structures 
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Co-Cured Stringer 

Fastened Shear Ties 

Full-Scale Fuselage Test Panels 

16 Ply Skin 

Jet Glow 
Express    

Paint 

 2 Coats of 
epoxy primer  

4’8” Tall 

6’4” Wide 
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A 

A 

3 2c 

2b 

2a 1 

Section A-A 

6’4” 

4’8” 

• On the skin between the stringers (1) 
• at the stringer/skin interface (2a-c) 
• directly over the center of the stringer (3) 
• at the shear-tie/skin interface ((4)not 

shown) 

Stringer 

Skin 

4 

Impact Locations of Interest 

Ice Impact - Joint Effort: UCSD 
(Prof. Hyonny Kim and Jacqui Le) 
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C-Scan Inspection Interpretation 

Select Impact Damage Examples 

Partially delaminated 
stringer flange 

Fully bonded 
stringer flange 

Fully disbonded 
stringer flange 

Interply delamination in 
the skin 

Pristine Area 
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UT Amplitude UT Time of 
Flight 

UT Resonance 

Comparison of NDI Techniques 

TOF and Resonance enhance detection of small disbonds 
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Ice Impact Testing Results 

 

• Induce both interply delamination and 
substructure disbonding 

• No damage was visually detectable from the 
surface 

• Damage was initiated at approximately 230 
Joules (~67 m/s) 

UT Resonance Y-Plot 

2.4 in diameter simulated hail impact tests were 
conducted between 50 and 120  m/s. Mid-Bay Impacts  

      

 
      
     

          
      

           
         

  

     
  

 

 

278.9 Joules 
(0.0) / (23.16) 

383.2 Joules 
(0.0) / (16.09) 

• Induce only substructure flange 
disbonding 

• No damage was visually detectable 
from the surface 

• Damage was initiated at 
approximately 170 Joules (~56 m/s) 
 

Stringer Flange Impacts 

Terminal velocity ~ 30 to 35 m/s) 
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Ice Impact Testing Results 

Stringer Flange Impacts 

Initiated substructure disbonding only, no interply delamination 
detected with these impacts 

89 m/s 

56 m/s 
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388.1 Joules 

Ice Impact Testing Results 

• Induce both interply delamination and substructure 
disbonding (mostly flange disbonding) 

• No damage was visually detectable from the surface 
• Possible to initiate damage at less than 400 Joules 

All shear tie impacts cracked the impacted shear tie 

Mid-Stringer Impacts 

• Induce built-up pad section 
delamination and cracked shear ties 

• Damage was visually detectable from 
the surface (cracks, surface 
markings at approximately 700 
Joules (115 m/s)) 

Unique inspection challenge! 

Shear Tie Impacts   
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iPhoton Solutions Full Panel 
Inspection Results 

Displacements are detected 
by a second laser beam and 
an interferometer 

iPLUS™ Technology 
• Laser‐ultrasonic systems for the inspection of composites 
• Conventional pulse‐echo ultrasonic NDT results 
• High speed testing of complex shape composites 
• Uses commercial articulated robots 
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Significant Damage with No Visual Indication 

40 inch stringer disbond 

54 in2 Interply delamination 

Co-cured 
stringer 
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Conclusion 

• This structure is robust against hail impact 
• Large damage can occur with no surface visual indication 
• Impacts can initiate substructure damage away from the impact site 
• Substructure impacts induce damage at less energy than mid-bay impacts 
• Hard tip impacts induce localized, near surface damage that are typically visibly 

detectable from the surface (depends on tip diameter and hardness) 

The presented work shows that... 

Ongoing efforts... 
• Subsurface damage can be difficult to detect with conventional NDI (ref. 

AANC SLE POD) 
• Characterized panels are being used to assess emerging NDI technologies 

•AANC Composite Impact Studies Include: 
Identifying impact scenarios of concern 
Identifying key parameters governing impact damage 
Characterizing impact damage below the BVID level 
Relating damage threat to capabilities of NDI 

•NDI ability to detect impact damage was assessed in FTE ~ BVID 
range → sensitivity, sizing, procedures, deployment  
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